高频钎焊机方法通常是以所应用的热源来命名的,其主要作用是依靠热源将工件加热到必要的温度,随着新热源的发展和使用,近年来出现了不少新的钎焊方法。
1、火焰钎焊
火焰钎焊是利用可燃气体(包括液体燃料的范汽)吹以空气或纯氧点燃后的火焰进行加热。火焰钎焊由于设备简单、燃气来源广、灵活性大,因而应用很广。
火焰钎焊所用焊炬可以是通用的气焊炬,也可以是专用的钎焊炬。专用钎焊炬的特点是火焰比较分散,加热集中程度较低,因而加热比较均匀。钎焊比较大的工件或机械化火焰钎焊时可采用装有多焰喷嘴的专门钎焊炬。
火锅钎焊所用的可燃气体可以是乙炔、丙烷、石油气、雾化汽油、煤气等。助燃气体为氧和压缩气体。加热范围十分广阔,从酒精喷灯的数百度到氧乙炔火焰的超过3000℃。火焰有两层结构,外层淡蓝色的冠状焰是氧化焰、燃烧完全,温度最高,富氧,过度加热容易使工件金属表面氧化:内层深蓝色的焰心是还原焰,温度较低,缺氧,富一氧化碳,能保护金属免于氧化。可燃气体燃烧产物都是CO2和高温水蒸汽(氢氧焰只有水蒸气),无论是钎剂还是钎料,忌讳高温水蒸汽都应考虑这一因素。
氧乙炔焰是最常用的火焰,由于火焰温度高,而钎焊温度则低得多。因此常用火焰的外焰来加热,因为该区火焰的温度低而体积大,加热比较均匀。一般使用中性火焰或轻微过乙炔焰。
当加热温度不要求太高时,可以用压缩空气代替氧,用丙烷、石油气,雾化汽油代替乙炔。这些火焰的温度较低,而且不用乙炔的火焰又不会污染钎剂,适用于钎焊比较小的工件以及铝和铝合金。
火焰钎焊时,将钎剂溶液预先涂在接头表面上或者先将钎料棒加热,沾以钎剂,再带到加热了的接头表面。钎料可预先安装或手工送进。钎焊时应先将工件均匀地加热到钎焊温度,然后再加钎料,否则钎料不能均匀地填充间隙。对于预置钎料的接头,也应先加热工件,避免因火焰与钎料直接接触,使其过早熔化,以软钎料进行钎焊时,还可采用喷灯来加热。
火焰钎焊时,除可用单焰钎焊处,还可用多焰焊炬。钎焊方式除手工操作外,还有专门的自动火焰钎焊机。
2、浸渍钎焊
浸渍钎焊是将工件局部或整体投入熔态的盐混合物(称盐浴)或钎料(称金属浴)中而实现加热和钎焊的方法。他的优点是加热迅速,生产率高,液态介质保护零件不受氧化,有时还能同时完成淬火等热处理过程,特别适用于大量生产。
浸渍钎焊可分为盐浴钎焊和金属浴钎焊。
(1)盐浴钎焊 盐浴钎焊主要用于硬钎焊。盐液由于是加热和保护的介质,故必须予以正确选择。
盐液成分应满足,具有合适的熔化温度;成分和性能稳定;对工件起保护作用。盐液的组分通常分以下几类:①中性氧盐,他可以防止工件表面氧化。除了用铜钎焊低碳铜外,用铜基钎料和银基钎料钎焊时,应在工件上施加钎剂。钎剂可以在组装前,组装过程中或组装后通过刷、浸沾或喷洒等方式加到工件上。②在中性氯盐中加入少量钎剂,台硼砂,以提高盐浴的去氧化能力。这时,在工件上不必再施加钎剂。为了保持盐液的去氧化能力,需要周期性地加入补充钎剂;③渗碳和氯化盐,这些盐本身具有钎剂。此外,在钎焊钢时,尚可对钢表面起渗碳和渗氮作用。④钎焊铝和铝合合金用的盐液既是导热的介质,又是钎焊过程中的钎剂。为了保证钎焊质量,必须定期检查盐液的组分及杂质含量并加以调整。
盐浴浸渍钎焊的主要设备是盐浴槽。加热方式有两种。一种是外热式的,盐浴槽实质是一个坩埚,坩埚可用碳钢,不锈钢制造;用于铝钎焊时,坩埚底部还应砌上石墨砖,外部用电阻丝加热。另一种是内热式的,盐浴槽的内壁由能耐盐液腐蚀的材料制成,通常为不锈钢或高铝砖;而铝钎焊盐浴槽材料系碳钢或纯铜;而钎焊铝用的盐浴槽的电极材料则采用石墨或不锈钢。为了操作安全,均用低电压(10~15V)大电流加热。当电流通过盐液时,由于电磁场的搅拌作用。整个盐液温度比较均匀,可控制在±3℃范围内。但盐液的电磁循环作用可能使零件或钎料发生错位,因此必须对组件进行可靠的固定。
放入盐浴前,为了去除水分及均匀加热,装配好的工件要进行预热。如为了去除工作及钎剂的水分,以防止盐液飞溅,则预热热到120~150℃即可。如为了减小工件进入时盐浴温度的下降,缩短钎焊时间,并保持均匀加热,预热温度可提高。
钎焊时,工件通常以某一角度倾斜浸入盐浴,以免空气被堵塞而阻碍盐液流入,造成漏钎。钎焊结束后,工件也应以一定角度取出,以便盐液流出,但倾角不能过大,以免前未凝固的钎料流积或流失。
盐浴浸渍钎焊的优点是生产率高,容易实现机械化,适宜于批量生产。不足之处是这种方法不适宜于间歇操作,工件的形状必须便于盐液能完全充满和流出。而且盐浴钎焊成本高,污染严重,现已不太采用这种钎焊方式。
(2)金属浴钎焊 这种钎焊方法是将装配好的工件浸入熔态钎料中,依靠熔态钎料的热量使工件加热到规定温度。与此同时,钎料渗入接头间隙,完成钎焊过程。
施加钎剂的方式有两种,一种是先将工件浸入钎剂溶液中,取出干燥后再浸入熔态钎料;另一种是在熔态钎料表面加一层熔态钎剂,工件通过熔态钎剂时就沾上了钎剂。为了防止熔态钎剂的失效,必须不断更换或补充新熔态钎料的氧化。
这种方法的优点是装配比较容易(不必安放钎料),生产率高。特别适合于钎缝多而复杂的工件,如散热器等,其缺点是工件表面沾潢钎料,增加了钎料的消耗量,必要时还须清除表面不应沾留的钎料。又由于钎料表面的氧化和母材的溶解,熔态钎料成分容易发生变化,需要不断的精炼和进行必要的更新。
金属浴钎焊由于熔态钎料表面容易氧化,主要用于软钎焊。
(3)波峰钎焊 波峰钎焊是金属浴钎焊的一种变种,主要用于印刷电路板的钎焊。在熔化钎料的底部安放一泵,依靠泵的作用使钎料不断地向上涌动,印刷电路板在与钎料的波峰接触的同时随传送带向前移动,从而实现元器件引线与焊盘的连接。
波峰钎焊又可分为单波峰钎焊、双波峰钎焊以及喷射空心波钎焊等等。图3所示的是双波峰焊的示意图。
波峰钎焊的特点是钎料波峰上没有氧化膜,能使钎料与电路板保持良好地接触,可大大加快钎焊速度,提高生产率。因钎料在液态不断流动,容易氧化,为此在表面常施加覆盖剂,或采用抗氧化锡铅钎料。
3、电阻钎焊
电阻钎焊又称为接触钎焊。他是依靠电流通过钎焊处电阻产生的热量来加热工件和熔化钎料的。电阻钎焊分直接加热和间接加热两种方式,
直接加热电阻钎焊,钎焊处由通过的电流直接加热,加热很快,但要求钎焊面紧密贴合、加热程度视电流大小和压力而定,加热电流在6000~15000A、压力在100~2000N之间。电板材料可选用铜、铬铜、钼、钨、石墨和铜钨烧结合金。
直接加热的电阻钎焊由于只有工件的钎焊区域被加热,因此加热迅速,但对工件形状及接触配合的要求高。图6、图7为电阻钎焊时的部分加工示意图,包括在电子工艺中的应用。
间接加热电阻钎焊,电流可只通过一个工件,而另一个工件的加热和钎料的熔化是依靠被通电加热的工件的热传导来实现的。也可以将电流通过一个较大的石墨板,工件放在此板上,依靠由电流加热的石墨板的传热实行加热。直接加热电阻钎焊的加热电流介于100~3000A之间,电极压力为50~500N。间接加热电阻钎焊灵活性较大,对工件接触面配合的要求较低,但因不是依靠电流直接通过加热的,整个工件被加热,加热速度慢。适宜于钎焊热物理性能差别大和厚度相差悬殊的工件,而且对钎焊面的配合要求可适当降低。
电阻钎焊广泛使用铜基和银基钎料。钎料常以片状放在接头处。在某些情况下,工件表面可电镀或包覆一层金属做钎料用。为使钎焊处导电,钎料以水溶液或酒精溶液除于钎焊处。
电阻钎焊可在通常的电阴焊机上进行,也可采用专门的电阻钎焊设备和手焊钳。
电阻钎焊的优点是加热极快,生产率高,但适于钎焊接头尺寸不大、形状不太复杂的工件,如刀具、带据、导线端头、电触点、电动机的定子线圈以及集成电路块元器件的连接等。
4、感应钎焊
感应钎焊是依靠工件在交流电的交变磁场中产生感应电流的电阻热来加热的钎焊方法。由于热量由工件本身产生,因此加热迅速,工件表面的氧化比炉中钎焊少,并可防止母材的晶粒长大和再结晶的发展。此外,还可实现对工件的局部加热。
感应钎焊时,工件放在感应器内(或附近),当交变电流通过感应器时,在其周围产生了交变磁场,由于电磁感应作用,使工件内产生感应电流,将工件迅速加热。
感应电流和其他交流电一样,电流通过导体时,沿导体表面电流密度最大,愈往中心,电流密度愈小,这就是所谓的“集肤效应”。
显然,感应加热的厚度取决于电流的参透深度,频度愈高,加热厚度愈小,表面加热愈迅速;相对磁导率愈小,加热厚度愈大,加热厚度也愈大。
必须指出,对含有铁磁材料的零件(如可伐),在低温时其相对磁导率很大,而加热至磁性转变温度(居里点)以上时,其相对磁导率(ur)降低为I。由于相对磁导率的显著变化,使加热厚度也相应改变,故钎焊时可采用较高的频率,一般使用不低于10KHZ的高频感应电流。而非磁性材料(如铜)的磁导率较小,与温度无关,集肤效应较小,因而电流分布较均匀,加热也较均匀,故感应钎焊时应采用较低的频率和较大的功率。感应钎焊的设备主要由感应电流发生器和感应器组成。
感应圈(如图8)是传递感应电流的部件,感应圈设计的好坏对加热影响极大。单匝感应圈的加热宽度小,多匝感应圈的加热宽度大。对多匝感应圈来说,改变节距可使加热形态发生变化。节距小时,加热宽度小,加热深度大;节距小时,加热宽度小,加热尝试大;节距大时,正好相反,但节距不能过大。感应圈与工件的耦合对加热的影响也比较明显。原则上说,感应圈与工件的耦合,愈紧愈好,这时加热效率最高,加热均匀程度也比较好;当感应圈与工件距离较大,即属于松耦合时,加热均匀程度进一步下降。当感应圈与工件的距离较大时,改变感应圈的形状与节距,也能改善加热形态,如增加感应圈中间圈的直径或采用不等的节距。对于多匝内热式感应圈,为改善加热形态,也可用直径变化的感应圈。对于单匝外热式感应圈,可采用改变感应圈面积的方法来达到较均匀加热的目的。
感应圈大部分由铜管制成,工作时内部通以冷却水。为了提高热效率,又防止感应圈与工件发生短路,感应圈与工件的距离为3~6mm。感应圈的匝距一般为1.5~2.2mm。必要时可根据工件的加热状态来进行适当的调整。
感应钎焊可使用各种钎料。由于钎焊加热速度很快,钎料和钎剂都在装配时预先放好。感应钎焊除可在空气中进行外(这时一定要加钎剂),也可在真空或保护气体中进行。在这种情况下,可同时将工件和感应圈放入容器内,也可将装有工件的容器放在感应圈内,而容器抽以真空或通保护气体。
感应钎焊广泛地用于钎焊钢、不锈钢、铜和铜合金等,即可用于软钎焊,也可用于硬钎焊,主要用来钎焊比较小的工件,特别适用于对称形状的工件,如管状接头、管与法兰、轴和盘的连接等。
5、炉中钎焊
炉中钎焊可广泛地用于可以预先将钎料放于接头附近或内部的工件。该法特别适用于高生产率的钎焊。预放置的钎料有丝、箔片、屑块、棒、粉末、软膏和带等形状。
炉中钎焊可分为空气炉中钎焊、保护气氛炉中钎焊和真空炉中钎焊。炉中钎焊的特点是工件系整体加热,加热均匀,工件变形小,但加热慢。一炉可以同时钎焊多件,以弥补加热慢的不足,对批量生产尤为合适。
(1)空气炉中钎焊 将装有钎料和钎剂的工件放入一般的工业炉中加热到规定的钎焊温度,钎剂熔化后先去除钎焊处的氧化膜,熔化的钎料然后流入接头间隙,冷凝后即形成接头。
炉中钎焊因加热速度低,在空气中加热时工件容易氧化,尤其在钎焊温度高时更为显著,不利于钎剂去除氧化物,故应用受到限制,已逐渐为保护气氛钎焊和真空钎焊所取代。空气炉中钎焊目前较多地用于钎焊铝和铝合金。这时要求炉膛温度均匀,近代温精度不低于±5℃。
(2)保护气氛炉中钎焊 保护气氛炉中钎焊根据所用气氛的不同,可分为还原性气氛炉中钎焊和惰性气体炉中钎焊。还原性气体的主要组分是氢和一氧化碳,他不仅能防止空气侵入,还能还原工件表面的氧化物,有助于钎料润湿母材。
还原性气体的还原能力不但同氢所和一氧化碳的含量有关,而且取决气体的含水量和二氧化碳的含量。气体的含水量以露点来表示。含水量越小,露点越低。钎焊钢和铜等金属时,由于这些金属的氧化物容易还原,允许气体的二氧化碳含量和露点高些;钎焊含铬、锰量较多的合金,如不锈钢时,由于这些元素的氧化物难以还原,应选用露点低和氧化碳含量小的气体。还原性气氛炉中钎焊示意图如图9所示。在高温下,氢气是许多金属氧化物的一种最好的活性还原剂。在干燥氢气中,硬钎焊时特别需要注意露点的控制,并且在整个钎焊过程中都必须仔细地控制。由于氢气会使铜、钛、锆、铌、钽等金属脆化,因此在考虑采用氢气作为一种钎焊保护气氛时应慎重。此外,空气中Φ(H)高于4%时,会成为一种易爆气体。应将废气烧掉或排到户外。
推荐用于硬钎焊的气氛范围很广泛,其中一些列于表1中,这些数据不是全部气氛与金属的组合表,而只能作为比较广泛采用的一些组合的一般性概述。稀有金属或比较复杂的异种金属必须进行硬钎焊时,由于气氛和热处理会对金属力学性能和治金特性产生各种各样的影响,所以必须寻求适宜的治金措施。
注:美国焊接学会分类号6、7和9包括压力降到266Pa。
①当采用含有挥发性元素的合金时,气氛中应加入钎剂。
②铜必须完全脱氧或无氧。
③加热时间要保持最短,以防止有害的脱碳。
④如果铝、钛、硅或铍含量显著,气氛中应加入钎剂。
(3)真空炉中钎焊 在抽出空气的炉中或焊接室中硬钎焊,是连接许多同种或异种金属接头的一种经济方法,过程中不使用钎剂。真空条件特别适合于钎焊面积很大而而连续的接头,这种接头;①在钎焊时难以彻底清除钎焊界面的固态或液态钎剂;②保护气体不完全有效,因为气氛不能排尽藏在紧贴钎焊界面中的气体。真空硬钎焊也适用于连接许多同种和异种金属,包括钛、锆、铌、钼和钽。这些金属的特点是,甚至很少量的大气中的气体也会使其脆化,有时在钎焊温度下就会碎裂。如果惰性气体有足够高的纯度,能防止金属的污染及性能的降低,那么这些金属及其合金也可以采用惰性气体做保护气氛进行钎焊。但是,值得注意的是,真空系统应抽气达到0.0013Pa而只含有10-5×0.1%的残余气体(体积分数),真空钎焊炉示意图如图10所示。与其他高纯度钎焊气氛相比,真空钎焊有如下优点和缺点:
1)抽真空从根本上清除了钎焊区所有的气体,因此不再需要去提纯所供给的气氛。工业上真空钎焊采用的压力一般为0.065Pa或更高些。实际采用的压力取决于所要钎焊的材料、所用的钎料、钎焊界面的面积和钎焊循环中从母材中排除气体的程度。
2)母材的某些氧化物在真空钎焊温度下会分解。采用特殊技术,可将真空广泛地用于钎焊不锈钢、超级合金、铝合金以及难熔金属。
3)钎焊界面由于母材排气而有时受到污染的困难问题,可以认为不再存在。母材一旦排气,就会直接从界面将裹入气体排除出来。
4)高温下,在母材和钎料周围存在低的压力,可使金属中的挥发性杂质和气体排除出去。
这种特性也是一个缺点,由于周围压力低,钎料、母材以及其中的元素在钎焊温度下要发生蒸发,但是,采用合适的真空钎焊技术可以防止这种倾向。
真空硬钎焊有高真空钎焊和局部真空钎焊两种。
高真空钎焊特别适合于那些氧化物难以分解的母材。在硬钎焊温度下,母材或钎料在高真空条件下易于挥发时,则常采用局部真空。在硬钎焊温度下,金属能保持固相或液相的最低压力是由计算或经验确定的。钎焊室抽气达到高真空状态。在高真空中钎焊加热循环始终要使温度刚好低于汽化开始的温度。逐渐地送进足量的高纯度氩气、氦气,或有时送进氢气,以便平衡在硬钎焊温度不挥发金属的范汽压力。采用这种技术,可以大大地扩大真空硬钎焊可焊的材料范围。
常常在进行高纯度干燥氢气硬钎焊前进行抽真空除气,这是应特别注意的,要除去即使是少量外来的或污染的气体,以确保气氛的高纯度。同样地,在抽真空前通以干燥氢气或惰性气体来驱气,对于在高真空气氛中获得更好的硬钎焊结果有时是有好处的。
有时,有计划在将锆、钛和其他氧气及其他气体亲和力高的元素接近要进行高真空硬钎焊的部件,但并不接触,这些元素称为“吸气剂”,他们能够迅速地吸收存在的很少量的氧气,氮气和其他硬钎焊时从母材中放出来的气体,从而改善了钎焊气氛质量。
由于某些元素在真空中易挥发,因此,真空炉钎焊不适用于含锌、镉、锰、磷等元素含量高的钎料,也不适用于含大量这些元素的母材。
6、特种方法
(1)气相钎焊
气相钎焊是利用非活性有机溶剂(氟化物)被加热沸腾产生的饱和范汽与工件表面接触时凝结放出的潜热而进行加热的。
用加热器将工件液体加热,挥发,使饱和范汽充满容器。工作液体主要是(C3F11)3N,其沸点为215℃,可满足锡铅共晶钎料钎焊温度的要求。当工件进入工作液体饱和范汽时,由于工件温度低,范汽在其表面沉积后冷凝,释放出潜热,进行钎焊加热。为了防止其范汽逸出大气,可使用辅助范汽(三氯二氟乙烷,沸点为47.5℃)。辅助范汽的密度介于工作阻挡层。容器上方装有凝聚用的冷却螺旋管,以防止进入大气。
这种钎焊方法的优点是加热均匀,能精确控制温度,生产率高,钎焊质量高。缺点是氟液价格昂贵。这种钎焊方法可用于钎焊印刷电路板的上的接线柱,在陶瓷基片上钎焊陶瓷片或钎焊芯片基座外部的引线等。
(2)放热反应钎焊
放热反应钎焊是另一种特殊硬钎焊方法。使钎料熔化和流动所需的热量是由放热化学反应产生的。放热化学反应是两个或多个反应物之间的任何反应,并且反应中热量是由于系统的自由能变化而释放的。虽然自然界为我们提供了无数的这类反应,但只有固态或接近于固态的金属与金属氧化物之间的反应才适应于放热反应钎焊装置。
放热反应钎焊,利用很简易的工具和设备。该法利用反应热使邻近或靠近的金属连接而达到一定温度,以致预先放在接头中的钎料熔化并润湿金属交接面的表面。放热反应的特点是不需要专门的绝热装置。故适用于难以加热的部位,或在野外钎焊的场合。目前已存在宇宙空间条件下实现钢管放热反应钎焊的实例。
(3)机械热脉冲劈刀钎焊法
这种方法依靠劈刀来传递热量,加热焊接点。预成型的钎料旋转在两个被焊物(母材)之间,劈刀以一定的压力压在其中一被焊物上,停留片刻使钎料熔化。他能够十分精确地控制由劈刀传给被焊物的热量和焊区的加热时间。劈刀的形状根据被焊物的形状而定,可以是契形、圆柱形或凹槽形。所用的钎料多半是低熔点的软钎料。如果配置适当的自动化设备,可以进行半自动或全自动的焊接。目前这种方法应用在梁式引线晶体管焊接和混合电路中的元件引线焊接及集成电路封盖。
(4)超声波钎焊法
超声波钎焊法是利用超声波振动传入熔化钎料,利用钎料内发生的空化现象破坏和去除母材表面的氧化物,使熔化钎料润湿纯净的母材表面而实现钎焊。其特点是钎焊时不需使用钎剂。
超声波钎焊法常应用于低温软钎焊工艺。随着温度升高,空化破坏加剧。当零件受热超过400℃,则超声波振动不仅使钎料的氧化膜微料脱落,而且钎料本身也会小块小块地脱落。因此,通常先将零件搪上钎料,再利用超声波烙铁进行钎焊。
(5)光学及激光钎焊法
光学钎焊是利用光的能量使焊点处发热,将钎料熔化、浸润被焊零件,填充连接的空隙。目前常用的光学钎焊法有两种。一种是红外灯直接照射,使钎料熔化,他一般用于集成电路封盖。另一种是利用透镜和反射镜等光学系统,将点光源的射线经聚光透镜成平行光束。光束的大小也由一组透镜聚焦调节,光线与被焊物的作用时间长短靠一个特殊的快门来控制。根据不同的设备可以应用在微电子器件内引线焊接和管壳的封装。他所用的钎剂一般是预成型的环形、圆形、矩形、球形的钎料。
激光钎焊法与光学钎焊法的基本原理相同,不同点是光源运用了光量子振荡器。
(6)扩散钎焊法
扩散钎焊法是把互相接触的固态异质金属或合金加热到他们的熔点以下,利用相互的扩散作用,在接触处产生一定深度的熔化而实现连接。当加热金属能形成共晶或一系列具有低熔点的固溶体时,就能实现这样的扩散钎焊。接触处所形成的液态合金在冷却时是连接两种材料的钎料,这种钎焊方法也称“接触一反应钎焊”或“自身钎焊”。当两种金属或合金不能形成共晶时,可在工件间放置垫圈状的其他金属或合金,以同时与两种金属形成共晶,实现扩散钎焊。
扩散钎焊过程可分成三个阶段。首先是接触处在固态下进行扩散。合金接触处附近的合金元素饱和,但未达到共晶的浓度。接着,接触处达到共晶成分的地方形成液相,促进合金元素的继续扩散,共晶的合金层将随时间增加。最后停止加热,接触处合金凝固。
版权所有 © 深圳聚鑫感应加热设备技术有限公司 备案号:粤ICP备20000953号-1 技术支持:百川互联